Entropy rate of nonequilibrium growing networks.

نویسندگان

  • Kun Zhao
  • Arda Halu
  • Simone Severini
  • Ginestra Bianconi
چکیده

New entropy measures have been recently introduced for the quantification of the complexity of networks. Most of these entropy measures apply to static networks or to dynamical processes defined on static complex networks. In this paper we define the entropy rate of growing network models. This entropy rate quantifies how many labeled networks are typically generated by the growing network models. We analytically evaluate the difference between the entropy rate of growing tree network models and the entropy of tree networks that have the same asymptotic degree distribution. We find that the growing networks with linear preferential attachment generated by dynamical models are exponentially less than the static networks with the same degree distribution for a large variety of relevant growing network models. We study the entropy rate for growing network models showing structural phase transitions including models with nonlinear preferential attachment. Finally, we bring numerical evidence that the entropy rate above and below the structural phase transitions follows a different scaling with the network size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonequilibrium Thermodynamics of Chemical Reaction Networks: Wisdom from Stochastic Thermodynamics

We build a rigorous nonequilibrium thermodynamic description for open chemical reaction networks of elementary reactions. Their dynamics is described by deterministic rate equations with mass action kinetics. Our most general framework considers open networks driven by time-dependent chemostats. The energy and entropy balances are established and a nonequilibrium Gibbs free energy is introduced...

متن کامل

Nonequilibrium quantum impurities: from entropy production to information theory.

Nonequilibrium steady-state currents, unlike their equilibrium counterparts, continuously dissipate energy into their physical surroundings leading to entropy production and time-reversal symmetry breaking. This Letter discusses these issues in the context of quantum impurity models. We use simple thermodynamic arguments to define the rate of entropy production sigma and show that sigma has a s...

متن کامل

Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production

We explored the dynamics of two interacting information systems. We show that for the Markovian marginal systems, the driving force for information dynamics is determined by both the information landscape and information flux. While the information landscape can be used to construct the driving force to describe the equilibrium time-reversible information system dynamics, the information flux c...

متن کامل

Revisiting the Glansdorff-Prigogine criterion for stability within irreversible thermodynamics

Glansdorff and Prigogine proposed a decomposition of the entropy production rate, which has more recently been rediscovered in various constructions of nonequilibrium statistical mechanics. Their context was irreversible thermodynamics which, while ignoring fluctuations, still allows a somewhat broader treatment than the one based on the Master or Fokker-Planck equation. Glansdorff and Prigogin...

متن کامل

Increasing Entropy: Heat Death or Perpetual Harmonies?

Classically, the increase of entropy implies an ineluctable dissipation of energy and materials into what is known as ‘heat death’. A strictly logical take on the Boltzmann entropy reveals, however, that the measure amalgamates order with disorganization. Hence, under some nonequilibrium circumstances, the production of order becomes an inevitable feature of increasing entropy. In particular, p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 84 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011